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An approach based on the concept of functional self-similarity is used to derive equations

of state for two- and three-dimensional hard-particle fluids. Calculations indicate that

this procedure works quite well, producing estimates of the compressibility factor that

closely agree with the results of computer simulation.
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I. Introduction

The equation of state of a fluid composed of structureless particles with repulsive,

hard-core interactions always can be written in the form

p
k T

V

B� N�(N;g) (1.1)

Here T is the absolute temperature and � the compressibility factor. Because of the im-

penetrable, hard-core interactions, this function � is independent of temperature.

Finally, N denotes the total number of particles and g is the dimensionless ratio of the

excluded volume per particle to V, the volume of the container to which the fluid is

confined. If the fluid is ideal, g = 0, �(N;0) = 1 and (1.1) reduces to the perfect gas

equation of state. However, when the hard cores of the particles are of finite size, the

pressure exceeds that of the corresponding perfect gas and the value of the compress-

ibility factor is greater than unity. The compressibility factor frequently is repre-

sented by a virial series of the form

�(�) = 1 + B j

j

j
�

�
� 1

1

� (1.2)

Here � = Ng is the volume (or packing) fraction of the hard-core particles and the Bj

are dimensionless virial coefficients. It should be noted that the formula (1.2) is ap-

propriate to the thermodynamic limit in which N �� and g � 0 with Ng = � and V fi-
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nite. For finite values of N the compressibility factor �(N;g) is a polynomial of finite

order in g with coefficients that are complicated functions of N [1].

At the present time only seven of the coefficients Bj have been evaluated for

hard-core particle systems in two and three dimensions [2]. As we soon shall demon-

strate [see Figures 2 and 3], the associated seventh order polynomial approximations

for the compressibility factor do, in fact, agree quite well at sufficiently low densities

with the results of computer simulations for hard discs and hard spheres. Neverthe-

less, it is of interest to produce alternatives to the simple perturbation series (1.2).

Specifically, we want to construct the sum of this infinite series based upon a know-

ledge of only the first few terms. A number of techniques have been proposed for this

purpose [3–5]. One of the most successful is that of Carnahan and Starling [4], ac-

cording to which the exact hard-sphere virial coefficients [see Table 1, below] are re-

placed with the integral approximations 4, 10, 18, 28, 40, 56 and 70 given by the

simple formula Bj(D = 3) = j2 + j – 2. The corresponding, modified virial series then

can be summed over all values of j to produce the well-known Carnahan-Starling

equation of state

� �
� � �

�CS ( )
( )

�
� � 	

	

1

1

2 3

3
; D = 3 (1.3)

This same procedure can be applied to the fluid of hard discs, in which case we replace

the first seven virial coefficients with the integer approximations Bj(D = 2) = j [see Ta-

ble 1]. The sum of the virial series associated with this approximation is given by the

same formula

� �
�

( )
( )

;�
	

1

1 2
D = 2 (1.4)

as that obtained by Helfand et al. [6] using the scaled-particle method.

The predictions of these two equations of state, (1.3) and (1.4), are in better agree-

ment with the results of computer simulations than predictions based on the corre-

sponding 7-term virial polynomials. Further improvements can be obtained by using

the truncated virial series as input polynomials for constructing Padé approximants.

This approach was proposed by Ree and Hoover [7], who obtained the expressions

�RH(�) = 1 + 2�
1 0 3934406 0 026076

1 1 957406 0 95768

2

2

	 �

	 �

. .

. .

� �

� �
; D = 2 (1.5)

and

�RH(�) = 1 + 4�
1 0 254028 0 277264

1 2 245972 1 301008

2

2

	 �

	 �

. .

. .

� �

� �
; D = 3 (1.6)

for 2D hard discs and 3D hard spheres, respectively. Compressibility factors com-

puted from these formulas are in very good agreement with simulation data, cf. Tables
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2 and 3. In addition to the Carnahan-Starling formulas and the Padé approximants,

other semiempirical equations of state (e.g., [8,9]) have been reported that generate

values of the compressibility factor which agree better with computer simulations

than do the virial polynomials.

While the success of these essentially empirical procedures are undeniable, one

might prefer a more physically motivated approach. It is in this spirit that we propose

an alternative method of resummation, which exploits the notions of scaling inva-

riance and functional self similarity. Our procedure provides an illustration of the

renormalization group (RG) method that has been applied usefully to other problems

of statistical physics. It is essential in this context to recognize that the RG method is

applicable to many very different physical problems, e.g., field theory, polymer phys-

ics and critical phenomena. According to Shirkov [8], “the RG method is the regular

method of improving perturbation theory results with the help of renorm-group Lie

equations....” Although Shirkov’s statement was made in the context of quantum

electrodynamics and with implied reference to series in power of the fine structure

constant, e2/�c, the RG method also has been used in connection with the magnetiza-

tion of the Ising model, represented by a power series in the exchange energy, and to

properties of self-avoiding polymer chains expressed in powers of a parameter re-

lated to the excluded-volume interaction energy. In each of these applications the

physical aspects of the specific system were incorporated within “initial data” repre-

sented by perturbation series. To exploit these data by means of the RG method one

must identify a system property to which the assumption of self similarity is appropri-

ate. This invariably is accomplished by identifying a property of the corresponding

ideal system that exhibits strict self similarity. In the study presented here, the RG

method is applied to the pressure of a hard-particle fluid and the input, “initial data”

are provided by truncated virial series. No claim can be made that results generated

by this method are exact, for were that so we would have succeeded in solving an in-

credibly difficult many-body problem. The success of the procedure is determined by

how well it works. To establish this we compare our predictions with the results of

Monte Carlo computer simulations.

Many efforts have been made in recent years (cf., [11–14]) to improve the predict-

ability of the local structure of inhomogeneous hard-sphere particles by using nontra-

ditional integral equations, some of which [15,16] generalize and extend the ideas of

the scaled-particle theory. Not only is the approach used in these studies very dif-

ferent from ours, but so also are the objectives. The integral equation methods con-

tend with subtle and detailed features of the fluid microstructure, whereas we focus

exclusively on the macroscopic equation of state.

In the following section we provide an outline of the basic principles of the RG

method, as they apply to the equation of state of a hard-particle fluid. Section III is de-

voted to the one-dimensional system of hard rods, thereby testing the efficacy of this

RG method. In Section IV we examine the hard-disc (D = 2) and hard-sphere (D = 3)

fluids. The paper concludes with a discussion of results.
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II. Self similarity and scaling

The concepts of functional self similarity and scaling invariance are best con-

veyed by means of a simple example. For this purpose we consider the equation of

state of a perfect gas, according to which the pressure is a linear function of the num-

ber of gas particles and can be written as

p = p(N; kBT/V) = N
k T

V

B
= Np(1; kBT/V) (2.1)

One easily verifies that the function defined by (2.1) satisfies the simple scaling rela-

tion

p(N; kBT/V) =
N

K
p(K; kBT/V) (2.2)

and this, in turn, can be rewritten as a functional equation,

p(N; kBT/V) = p
N

K
p K k T VB; ( ; /




��


��
(2.3)

that expresses scaling invariance.

According to (2.3), the pressure of a perfect gas is a strictly self-similar object

with respect to scaling of the particle number. Alternatively, one can interpret (2.3) as

a statement that the pressure is invariant with respect to the scaling transformation

N � N� = N/K

p(1; kBT/V) � p(K; kBT/V)

(2.4)

Incidentally, (2.2) can be identified as a form of the Dalton law, pertaining to the

additivity of the partial pressures exerted by N/K subsystems, each at the same tem-

perature and consisting of K particles confined to a common container of volume V.

Yet another interpretation of the situation is to identify (2.3) as the equation of

evolution of a dynamical system, with the particle number N playing the role of a dis-

crete time (1 � � � �). One then identifies the single-particle pressure p(1; kBT/V) =

kBT/V to be the “initial value” of the pressure.

The problem becomes more complex when excluded-volume interactions among

the particles are taken into account. The pressure and the associated compressibility

factor then become dependent on an additional variable g, which serves as a measure

of the volume that has become inaccessible to the particle centers due to their impene-

trable, hard cores. The pressure of this non-ideal fluid may be written as

p(N; g, kBT/V) = p(1; kBT/V)N�(N; g)

=
N

K

N g

K g

�

�

( ; )

( ; )
p(1; kBT/V)K�(K; g)
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=
N

K

N g

K g

�

�

( ; )

( ; )
p(K; g, kBT/V) (2.5)

The last of these expressions can be recast in a form analogous to the right-hand side

of (2.2), provided that we are able to find a function g(K; g), known as the effective (or

running) coupling function, such that the relationship

�

�
�

( ; )

( ; )
; ( ; )

N g

K g

N

K
g K g�




��


��
(2.6)

is an identity. Equation (2.5) then would assume the form

p(N; g, kBT/V) =
N

K
�

N

K
g K g; ( ; )




��


��
p(K; g, kBT/V) (2.7)

and this can be rewritten as a functional equation

p(N; g, kBT/V) = p
N

K
g K g p K g k T VB; ( ; ), ( , , / )




��


��
(2.8)

which closely resembles the scaling invariance condition (2.3). Finally, by regroup-

ing terms on the right-hand side of (2.5), this generalized scaling invariance condition

for a non-ideal fluid can be recast in the form

p(N; g, kBT/V) = p K g p
N

K
g K g k T VB; , ; ( ; ), /

�

�
�

�

�
�




�
�



�
� (2.9)

A few comments are in order, concerning the physical interpretation of the for-

malism presented above. First we note that the expression (2.7) describes a scaling of

the pressure. The system of N particles is (virtually) separated into N/K subsystems,

every one of which contains K interacting particles. Each of these subsystems occu-

pies the entire volume V and contributes a partial pressure p(K; g, kBT/V). If it were

permissible to neglect interactions among particles assigned to different subsystems,

the total pressure would equal (N/K)p(K; g, kBT/V). However, particles belonging to

different subsystems do indeed interact with one another, so that it is necessary to in-

troduce a corrective factor, namely the renormalized compressibility factor �(N/K;

g(K; g)). Incorporation of this factor produces the equation (2.7), which clearly can be

interpreted as a “scaled-up” form of the corresponding equation, (1.1). Equation (2.7)

then has been rewritten in the form (2.8) of a functional equation, expressing the re-

quirement that the value of the pressure be unaltered by the virtual subdivision of the

system.

Whether the pressure of a non-ideal fluid can indeed be treated as a functionally

self-similar object depends on our success in finding an effective coupling function

g(K; g) that makes (2.6) a mathematical identity. This equation can be written in the

explicitly multiplicative form
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�(NK; g) = �(K; g)�(N; g(K; g)) (2.10)

where, according to (2.5), �(1; g) = 1. Then, since (2.10) must be satisfied identically

for K = 1, it follows that the initial condition for the effective coupling function is g(1;

g) = g. Our search for the effective coupling function is now completed, for it has been

established elsewhere [17] that a function which conforms to this initial condition and

obeys (2.10) is an invariant of the scaling transformation

N � N� = N/K

g � g� = g(K; g)

(2.11)

that satisfies the conservation equation

g(N; g) = g[N/K; g(K; g)] (2.12)

The two functional equations, (2.10) and (2.12), form a self-consistent pair gov-

erning the evolution of the dynamical system under consideration. Identical equa-

tions arise in quantum field theory where they are identified as the functional

equations of a multiplicative renormalization group [10,18]. Specifically, (2.10) is

identical to the equation for the generalized propagator and (2.12) is the same as that

satisfied by the invariant charge.

The utility of these functional equations of evolution, as well as the related differ-

ential (Lie) equations given below, is that they permit one to calculate the compress-

ibility factor of a dense, many-body fluid of hard-core particles from information

about the compressibility factors of similar systems consisting of only a relatively

few particles. In particular, one can use a truncated virial polynomial, that certainly is

accurate at low densities, to generate reliable estimates of the compressibility factor

for much higher densities. It is important to recognize that the RG formula obtained

for the object function (here �(N; g)) will be functionally dependent on the initial ap-

proximation that one has selected, e.g., a specific truncated virial polynomial. Al-

though it is reasonable to expect that convergence will result from the systematic

consideration of a sequence of such initial approximations, each input set of data

does, in principle, produce a different RG estimate of the object function and one

which does as well satisfy the general conservation equation (here (2.8)).

Before proceeding to the calculational part of the paper we must attend to a tech-

nical problem associated with the use of the asymptotic [N ��, g � 0; Ng = � finite]

series (1.2). In particular, the compressibility factor given by this series does not sat-

isfy the condition �(1; g) = 1 and, thus, is not normalized to unity with respect to the

generalized, time-like variable N. Instead of attempting to construct a modified ex-

pression for �(N; g) that would be valid for all values of N (see [1] for a virial series

correct to second order in g), we introduce the “transfer function” or normalized com-

pressibility factor

�
~

(N; g) = �(N; g)/�(1; g) (2.13)
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The conservation equation (2.8) then is rewritten as

p N g
k T

V
g p

N

K
g p K g

N

K
g

k T

V

B B
; , ( ; ) ; , ; ; , (� �1 1
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��
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�

�
�

�

�
� ; )g




�
�



�
�

�
�
�

�
�
�

(2.14)

thereby replacing (2.5) with

p N g
k T

V
g p

k T

V
g N N g

B B
; , ( ; ) ; ( ; ) ( ; )

~

� � �1 1 1



��


��
�

�

�
�

�

�
� (2.15)

and the initial condition p(1; kBT/V) = kBT/V with

p
k T

V
g

k T

V
g

B B
1 1 1; ( ; ) ( ; )� �



��


��
� (2.16)

The equation of evolution for the transfer function is identical with (2.10),

namely

�
~

(N; g) = �
~

(K; g)�
~ N

K
g K g; ( ; )

�

�
�

�

�
� (2.17)

and the effective coupling function continues to satisfy (2.12).

It previously has been demonstrated [17] that the Lie differential equations

 �

 
!

ln ( ; )

ln
[ ( ; )]

~

N g

N
g N g� (2.18)

 

 
"

g N g

N
g N g

( ; )

ln
[ ( ; )]� (2.19)

can be obtained directly from the functional equations (2.12) and (2.17). The objects

!(g) and "(g) appearing in these equations are the infinitesimal generators of the RG

transformation, defined here by the formulas

!( )g �
 �

 

~

( ; )N g

N
N �1

(2.20)

and

"(g) =
 

 

g( ; )N g

N
N �1

(2.21)

As mentioned previously, the effective coupling function is not an independent

quantity but a functional of the object function �
~

(N; g) which must be determined

self-consistently in order to insure the validity of the conservation equation (2.14).
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To accomplish this we first differentiate (2.18) with respect to N, thereby obtaining

the expression

 
 

 �

 

 !

 

 

 N N

g N g

g N g

g N g

N

ln

ln

[ ( ; )]

( ; )

( ; )
~


�

�
�



�

�
�
� (2.22)

Next, by taking the limit of (2.22) for N � 1 we obtain the formula
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 �

 

 !

 

! !
 �

 
( )

ln

ln
( ) ( )

~ ~

g

N N

g

g g
N
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�
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�1

2

2

2

1N

g

�

 !

 

(2.23)

which provides an explicit relationship between the so-called Gell-Mann and Low

function "(g) and the derivatives of the object function, evaluated for the initial value

(N = 1) of the group parameter.

By taking into account the definition (2.13) of the normalized compressibility

factor and the relationship �(N; g) = �(�) between the compressibility factor itself and

the virial series of (1.1) one can express the generators directly in terms of the com-

pressibility factor, viz.

!
�

�
( )

( )

( )
g

g

g

d g

dg
� (2.24)

and

"

! !
�

�

!
( )

( ) ( )
( )

g

g g
g

g

d

dg

d

dg

�

	 �2

2 2

2

(2.25)

Next, by using (2.24) to calculate d!/dg we find that

"(g) = g

From this last result it can be seen that (2.19) reduces to the simple differential equa-

tion  g(N; g)/ ln N = g(N; g), the solution of which is

g(N; g) = Ng (2.27)

The Lie equation (2.18) consequently can be written in the form

�
#

(N; g) = exp dN Ng N

N

!( ) /
1

$ (2.28)

Suppose, now, that our choice for the initial approximation is the virial polyno-

mial (truncated series)
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�M j

j

j

M

g B g( ) � � �
�
�1 1

1

(2.29)

From (2.24) we then obtain the corresponding approximation

! M

j

j

j

M

j

j

j

M j

j

j

g
jB g

B g
g( ) �

�
�

��

��

�
�

�
�

�11

11

1
11
% (2.30)

with

%2 = B2

%3 = 2B3 – B2

2

%4 = 3B4 – 3B2B3 + B2

3

� (2.31)

The transfer function�
~

(N; g) of (2.28) now can be evaluated. If only terms to sec-

ond order in g are retained, the result is

�
~

(N; g) = exp B g N B B g N2 3 2

2 2 21
1

2
2 1( ) ( ) ( )	 � 	 	




��


��
(2.32)

In the limit N ��, g � 0, Ng = � finite, this produces a formula for the compressibil-

ity factor,

�(�) = exp B B B2 3 2

2 21

2
2� �� 	




��


��
( ) (2.33)

that constitutes a generalization of the Shinomoto [5] equation of state to systems of

hard-core particles in spaces of arbitrary dimensions.

More generally, RG calculations using virial polynomials (2.29) for the initial ap-

proximation, produce transfer functions of the form

�
~

( ; ) exp ( )N g g
j

Nj

j j

j

� 	
�
�
�

�
�
�

�
�
�% 1

1

1
1 (2.34)

and these, in turn, yield the corresponding cumulant [19] approximations

� � �( ) exp�
�
�
�

�
�
�

�
�
�% j

j

j j
1

1

1
(2.35)

for the compressibility factor.
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III. One-dimensional, hard-rod fluid

The so-called Tonks gas [20], consisting of hard particles (rods) confined to a line

segment of length L, is an exactly solvable model which therefore can be used to test

the RG method outlined in the preceding section. Tonks showed that the pressure of

this hard-rod system was given by the formula

p
k T

L
N

Ng

B�
	
1

1
(3.1)

where the “bare coupling parameter” g = &/L equals the ratio of &, the length of a sin-

gle rod, to L, the length of the line segment. The corresponding compressibility factor

� �
�

( ) �
	
1

1
(3.2)

with� = gN, then can be represented by the virial series (1.2), all coefficients of which

have the common value Bj = 1.

We now assume that the exact formula (3.2) is not known and that the only infor-

mation available to us is the polynomial approximation

� � � � �k

s k

s

k

( ) ( ) / ( )� � � 	 	�

�
�1 1 11

1

(3.3)

The corresponding, approximate infinitesimal generator !k(g) is then

!k(g) =
g

g
k

g g

g

k

k1
1 1

1

1 1	
	 �

	

	




�
�



�
��

( )
( )

= g + g2 + g3 + ''' + gk + ''' (3.4)

In the limit k � � this series approaches the exact result, namely,

!(g) = lim ( )
k

k g
g

g��
�

	
!

1
(3.5)

The Shinomoto-like, exponential approximation for the compressibility factor of

the Tonks gas is

� � � �( ) exp( �
�

�
�

�

�
�

1

2

2 (3.6)

In Figure 1, predictions based on this simple approximation are compared with results

obtained from the exact formula (3.2). The other curves included in this figure illus-

trate that by using progressively higher order approximations one obtains cor-

respondingly more accurate estimates of the compressibility factor. The general for-

mula (2.35), with all coefficients %i set equal to unity, obviously converges to the ex-

act formula (3.2) in the limit k � �, viz.,
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�(�) = lim exp exp ln
k
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k

j�� �
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�
�
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� � 	

1 1

1

1

11

�
� �

(3.7)

The one-dimensional, hard-rod system clearly is exceptional. In all other cases

one is unable to solve the problem exactly. Indeed, this is precisely why it is necessary

to develop an effective approximation procedure, such as the RG method described

above, which permits one to construct the object function from limited information

(here the behavior of the compressibility factor at low densities).

IV. Hard discs and hard spheres

For hard-core fluids in two and three dimensions the available information about

the compressibility factor is limited to seven coefficients of the virial series (1.2).

The relevant data are presented in Table 1.

From these data and (2.33) one obtains the Shinomoto 2D and 3D, second order

cumulant approximations

� � � �2D

Sh ( ) exp( . )� �2 1128 2 (4.1)

and

� � � �3D

Sh ( ) exp( )� �4 2 2 (4.2)

respectively. Corresponding to these are the seventh order cumulant approximations

�2D(�) = exp(2�+1.128�2+0.6686�3+0.4409�4+0.3465�5+0.3043�6+0.2892�7) (4.3)
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Figure 1. The compressibility factor of a one-dimensional hard-rod fluid. The continuous curve (labeled

“exact”) is a plot of the Tonks equation (3.1). The labels 2, 3 and 7 of the broken curves indicate

the number of virial coefficients used to construct the corresponding RG approximations.



and

�3D(�) = exp(4��)�2 – 0.3020�3+0.7653�4+1.8302�5–0.2013�6+0.7146�7) (4.4)

obtained by using all seven of the presently available virial coefficients.

Values of the compressibility factor predicted by these and several other approxi-

mate formulas are presented graphically in Figure 2 (2D) and Figure 3 (3D), where

they also are compared with results generated by computer simulations. Indicated in

these figures by the symbols �RCP and �OCP are the packing fractions specific to ran-

dom (RCP) and ordered (OCP) closest packing of the discs and spheres. The current

best estimates of these densities [21] are �RCP(2D) ( 0.82 and �OCP(2D) ( 0.907 for

discs and �RCP(3D) ( 0.64 and �OCP(3D) ( 0.74 for spheres. Finally, numerical val-

ues of the compressibility factor obtained from several approximation formulas are

collected in Table 2 (2D) and Table 3 (3D).

Table 1. Virial coefficients Bj and the corresponding cumulant coefficients %j (see Eq. (2.30)) for two (2D)
and three (3D) dimensional hard-core fluids [2].

2D 3D

j Bj %j Bj %j

2 2 2 4 4

3 3.128 2.256 10 4

4 4.258 2.005 18.365 –0.906

5 5.337 1.764 28.224 3.061

6 6.363 1.732 39.739 9.151

7 7.351 1.820 53.539 –1.208

8 8.338 2.038 70.779 5.002

The squares, circles, triangles and diamonds of Figure 2 locate values of the

hard-disc compressibility factor obtained from several computer simulations. Com-

pressibility factor estimates based on the Shinomoto-type, second-order cumulant

approximation fall below all the simulation data except for those indicated by circles

[23]. Significantly better predictions are produced by the third order cumulant ap-

proximation, marked “2” in the figure, which utilizes only the three virial coefficients

B2, B3 and B4. Indeed, curve “2” is indistinguishable from a plot of the seventh order

virial polynomial. Even better agreement with the computer simulations is provided

by the seventh order cumulant approximation of (4.3), which appears in the figure as

curve “3”.

It is unfortunate that the simulations of Erpenbeck and Luban [22], which appear

to be the most precise presently available, are limited to densities � < 0.65. We have

included these simulation data (indicated by solid squares in Fig. 2) in Table 2 so that

they can be compared directly with the predictions of several approximation formu-

las. It is apparent from the entries in this table (see the percent deviations appearing in

the last row) that, for the densities studied by Erpenbeck and Luban, the Padé Ap-

proximant equation of state agrees best with the simulation data. Second in perfor-
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Figure 2. The compressibility factor of a two-dimensional hard-disc fluid. The solid squares, circles, tri-

angles and diamonds indicate values of the compressibility factor obtained from the computer

simulations of Erpenbeck and Luban [22], Rotenberg [23], Metropolis et al. [24] and from Ree

and Hoover’s collection of Alder data [7], respectively.

The curve labeled “1” is a plot of the Shinomoto, second-order cumulative approximation of

Eq. (4.1). The third-order cumulant approximation of curve “2” is virtually identical with the

seventh order virial polynomial. Curve “3” is the seventh order cumulant approximation (the

highest order available). Curve “4” is a plot of the “resummed” virial series given by Eq. (1.4).

Finally, �RCP and �OCP are the packing fractions for random (RCP) and ordered (OCP) close

packing, respectively.

Figure 3. The compressibility factor of a hard-sphere fluid. The solid squares, circles and diamonds indi-

cate values obtained from the computer simulations of Erpenbeck and Wood [25], Rotenberg

[23] and Woodcock [26], respectively.

The curve “1” is a plot of the seventh-order virial polynomial. Curve “2” is the Shinomoto, sec-

ond-order cumulant approximation of Eq. (4.2). Finally, “3” is a plot of the RG seventh-order

cumulant approximation of Eq. (4.4) and of the Carnahan-Starling equation (1.3) as well, since

they are indistinguishable on the scale of this figure.



mance is the RG equation of state (seventh order cumulant) and third is (1.4), which

we obtained in Section I by using the Carnahan-Starling [4] trick for summing the

virial series and which earlier was gotten by using the scaled-particle method [6].

Table 2. Compressibility factors for a 2D system of hard discs. Here � denotes the packing fraction and * =

1/10 | ( ) ( )|/ ( )� � � � � �MC jj j MC j	
�� 1

10
is the average fractional deviation from the Monte Carlo

(MC), computer simulation data of Ref. [22].

Packing

fraction

�

Simulations

MC

Virial

series

Scaled particle

theory

Eg. (1.4)

Shinomoto

Eq. (4.1)

Padé

approximant

Eq. (1.5)

RG

theory

Eq. (4.3)

0.03023 1.06337(2) 1.06344 1.06332 1.06342 1.06344 1.06344

0.04534 1.09743(3) 1.09753 1.09724 1.09746 1.09753 1.09753

0.09069 1.21068(3) 1.21069 1.20972 1.21004 1.21069 1.21069

0.18138 1.4983(1) 1.49852 1.49223 1.49163 1.49844 1.49843

0.30230 2.0771(2) 2.07625 2.05429 2.02928 2.07730 2.07717

0.45345 3.4243(3) 3.39145 3.34765 3.12313 3.42425 3.42205

0.50383 4.1715(4) 4.08566 4.06199 3.64734 4.17030 4.16419

0.56681 5.4963(6) 5.23751 5.32897 4.46387 5.49079 5.46884

0.60460 6.6074(6) 6.12604 6.39627 5.06083 6.59791 6.55083

0.64779 8.306(1) 7.37348 8.06114 5.86454 8.31249 8.20012

100* 0 2.64 1.57 9.58 0.0388 0.290

Table 3. Compressibility factors for a 3D system of hard spheres. � denotes the packing fraction and * =

1 10
1

10
/ | ( ) ( )|/ ( )� � � � � �MC jj j MC j	

�� is the average fractional deviation from the Monte Carlo

(MC), computer simulation data of Ref. [25].

Packing

fraction

�

Simulations

MC

Virial

series

C-S

Eq. (1.3)

Shinomoto

Eq. (4.2)

Padé

approximant

Eq. (1.6)

RG

theory

Eq. (4.4)

0.0296 1.12777 1.12766 1.1277 1.12767 1.12766 1.12766

0.0411 1.18282 1.18265 1.1826 1.18267 1.18265 1.18265

0.0740 1.35939 1.35915 1.3590 1.35928 1.35915 1.35915

0.1481 1.88839 1.88848 1.8872 1.88941 1.88847 1.88850

0.1851 2.24356 2.24394 2.2416 2.24549 2.24394 2.24409

0.2468 3.03114 3.02952 3.0252 3.03139 3.03026 3.03129

0.3702 5.85016 5.79471 5.8305 5.78285 5.83311 5.85230

0.4114 7.43040 7.29440 7.4099 7.27250 7.39697 7.44104

0.4356 8.60034 8.37362 8.5806 8.34694 8.54838 8.61875

0.4628 10.19388 9.79982 10.1780 9.77246 10.10784 10.22531

100* 0 0.940 0.140 1.053 0.228 0.078
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Figure 3 and Table 3 tell a somewhat similar story for 3D hard spheres, but here

the seventh order cumulant approximation of the RG theory provides the most accu-

rate representation of the Monte Carlo simulation data. The average deviation be-

tween Monte Carlo data points and our predictions is less than 0.08%. Next in

accuracy is the Carnahan-Starling Eq. (1.3) which exhibits a relative deviation that is

almost twice as large as that of the RG equation of state (4.4). Also of interest in this

context are predictions of the compressibility factor extracted from the theory of

Labik et al. [15,16]). Although these are not included in Figure 3 or Table 3, they are

characterized by an average percent deviation of 100* = 0.159, which is slightly

larger than that of the Carnahan-Starling equation of state.

V. Closing remarks

The renormalization group (RG) method used in this paper is based on the as-

sumption that the pressure of a hard-particle fluid, at constant temperature and vol-

ume, is a self-similar function of the number of particles. The hint that this might be so

is provided by the equation of state of a perfect gas of N particles, which according to

(2.3) equals the sum of the partial pressures exerted by N/K similar subsystems, each

at the same temperature and consisting of K particles confined to a common container

of volume V. The functional equation of our RG, (2.8) or (2.9), is a logical generaliza-

tion of this Dalton law to non-ideal fluids of hard particles.

The idea of partitioning the elements of a many-body system into subsystems,

deemed to be similar to the total system, is an essential feature of many real-space RG

techniques. In particular, it was used in Kadanoff’s approach [27,28] to the spin-

lattice problem, according to which the entire lattice was divided into blocks. It also

was part of de Gennes’ [29] treatment of a linear polymer chain, which he divided into

a collection of “blobs”.

Our version of this method stresses the intimate relationship that can be estab-

lished between the object function (here the compressibility factor) and the effective

coupling function, which here serves simply as a control function of the approxima-

tion. Thus, the role of this coupling function is to ensure that the basic conservation

(or evolution) equation (2.8) is a mathematical identity. This formulation of RG the-

ory closely follows the general line of reasoning of the “old RG method”, as outlined

by Shirkov [10] and by Bogoliubov and Shirkov [18]. The method is treated as a

mathematical procedure by which one can extend the range of group parameters (N in

our case) for which an initial approximation to the object function is applicable. To

accomplish this one derives an equation of evolution for the quantity of interest. This

last feature of the theory, as presented here, distinguishes it from other approaches

used in statistical mechanics to obtain equations of state for non-ideal fluids. Thus,

for example, widely known equations of state for hard-particle fluids such as those of

Percus and Yevick, the HNC theory [30] and those cited in [15] and [16], are obtained

by procedures designed to determine the equilibrium pair correlation function of the

fluid. Once this has been found, the compressibility factor then is determined from

the relationship (in 3 dimensions)
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with g2(&) denoting the value at contact of the radial distribution function. In this re-

spect, our method is more direct and relies only on a knowledge of a few virial coeffi-

cients.
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